CW36 - Semester 1 Exam Review

Period

For each problem, find the average rate of change of the function over the given interval.

1)
$$f(x) = x^2 + x + 2$$
; $[0, \frac{1}{4}]$

Perform the indicated operation.

2)
$$g(x) = x - 3$$

 $f(x) = x^2 + 5$
Find $(g + f)(x)$

3)
$$g(n) = n - 3$$

 $f(n) = n^3 + 5n$
Find $(g - f)(n)$

4)
$$g(x) = x - 3$$

 $h(x) = 2x + 2$
Find $(g \cdot h)(x)$

5)
$$g(n) = n^3 + 5n$$

 $h(n) = 3n$
Find $\left(\frac{g}{h}\right)(n)$

6)
$$f(a) = -a + 2$$
$$g(a) = a^2 + 4$$
Find $(f \circ g)(a)$

7)
$$g(x) = x^2 - 2x$$

 $h(x) = -2x + 5$
Find $(5g - 5h)(x)$

Divide. Write your answer in fraction form.

8)
$$(3x^3 + 12x^2 - 16x - 17) \div (x + 5)$$

Find the inverse of each function.

9)
$$g(x) = \sqrt[5]{\frac{-x-3}{2}}$$

10)
$$g(x) = (x-3)^3$$

Write a polynomial function of least degree with integral coefficients that has the given zeros.

11)
$$\frac{3}{2}$$
 mult. 2, -3

Find all zeros.

12)
$$f(x) = 27x^3 - 125$$

13)
$$f(x) = 2x^4 + 11x^2 - 21$$

Solve each equation. Remember to check for extraneous solutions.

14)
$$1 + \frac{6x+18}{5x} = \frac{x+3}{x}$$

15)
$$\frac{1}{6n+2} + 1 = \frac{5}{6n+2}$$

Solve each equation.

16)
$$9^{-3b} = 27^{2-2b}$$

Rewrite each equation in exponential form.

17)
$$\log_{\frac{1}{11}} \frac{1}{121} = 2$$

Rewrite each equation in logarithmic form.

18)
$$14^2 = 196$$

Rewrite each equation in exponential form.

19)
$$\log_{v} x = -9$$

Rewrite each equation in logarithmic form.

20)
$$10^{12} = v$$

Use a calculator to approximate each to the nearest thousandth.

Expand each logarithm.

$$23) \log_9 \left(uv^4\right)^3$$

Condense each expression to a single logarithm.

24)
$$4\log_3 a + 2\log_3 b$$

Solve each equation. Round your answers to the nearest ten-thousandth.

25)
$$-5 \cdot 3^{10n} = -60$$

26)
$$-7 \cdot 18^{m-1} + 4 = -47$$

27)
$$-3 \cdot 10^{10-10x} - 6 = -98$$

Solve each equation.

28)
$$\log_7 (-4x + 10) = \log_7 x$$

29)
$$\log_8 -4x + \log_8 9 = \log_8 63$$

Identify the vertex, focus, axis of symmetry, direction of opening, and min/max value of each. Then sketch the graph.

30)
$$y = -x^2 + 4x$$

Use the information provided to write the vertex form equation of each parabola.

31) Vertex:
$$(-5, -4)$$
, Focus: $\left(-5, -\frac{47}{12}\right)$

Use the information provided to write the general conic form equation of each parabola.

32) Vertex:
$$(3, -10)$$
, Focus: $\left(3, -\frac{39}{4}\right)$

Identify the center and radius of each. Then sketch the graph.

33)
$$\left(x - \frac{5}{2}\right)^2 + \left(y + 2\right)^2 = 13$$

Use the information provided to write the standard form equation of each circle.

34) Center: (2, 13) Radius: 4

Use the information provided to write the general conic form equation of each circle.

35) Center: (7, 4) Radius: 6 Identify the center, vertices, foci, and eccentricity of each. Then sketch the graph.

36)
$$x^2 + 9y^2 - 90y + 189 = 0$$

Use the information provided to write the standard form equation of each ellipse.

37) Vertices:
$$(3, 2), (3, -20)$$

Foci: $(3, -9 + \sqrt{21}), (3, -9 - \sqrt{21})$

Use the information provided to write the general conic form equation of each ellipse.

Identify the vertices, foci, asymptotes, and eccentricity of each. Then sketch the graph.

39)
$$\frac{(y-3)^2}{4} - \frac{(x-2)^2}{4} = 1$$

Use the information provided to write the standard form equation of each hyperbola.

40) Vertices:
$$(2, -8), (-22, -8)$$

Foci: $(-10 + 3\sqrt{17}, -8), (-10 - 3\sqrt{17}, -8)$

Use the information provided to write the general conic form equation of each hyperbola.

41) Vertices:
$$(-9, 6), (-9, -10)$$

Foci: $(-9, -2 + 4\sqrt{5}), (-9, -2 - 4\sqrt{5})$